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Abstract

A method of realizing unilateral constraints by introducing a small parameter into the kinetic energy, such that the kinetic energy
of the system degenerates on a certain manifold in configuration space when the parameter is equal to zero, is considered. The
behaviour of the system in the neighbourhood of the degeneracy manifold in the multidimensional case when the small parameter
approaches zero is investigated. The results obtained are used in the problem of the motion of a double mathematical pendulum
when the mass of the point closest to the suspension point is small.
© 2006 Elsevier Ltd. All rights reserved.

The realization of constraints in the case when the kinetic energy is degenerate on a certain manifold was first
considered by Dirac1,2 for purposes of quantum mechanics; he investigated the behaviour of trajectories on this
manifold, which corresponds to the realization of a bilateral constraint. The “generalized Hamiltonians of the Dirac
formalism” was used in Ref. 3 in the problem of realizing a unilateral holonomic constraint by elastic forces. The
behaviour of the system in the neighbourhood of the degeneracy manifold was investigated in Ref. 4 in the two-
dimensional case.

1. Formulation of the problem

Consider the problem of the motion in space of a system of N particles with masses mi, constrained by scleronomous
holonomic ideal constraints. A force with potential energy V (r1, . . . , rN ) acts on the particles, where ri is the radius
vector of the i-th particle. We will assume that the system has n degrees of freedom. We will introduce generalized
coordinates x̄ = (x1, . . . , xn) in a certain region � ⊂ R3N in the configuration space of the system. Then ri = ri(x̄)(i =
1, . . . , N).

The kinetic energy of the system in generalized coordinates has the form
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We will assume that the masses of one or several particles are small (of the order of �2), in which case the kinetic-energy
matrix C(x̄, �2) = (cij) depends on the parameter �. We will assume that this relationship is such that when � = 0 the
determinant of the matrix C(x̄, 0) vanishes on a certain hypersurface � ⊂ �, given by the equation

We will assume that df|� �= 0. Then � is a smooth hypersurface and we can choose local generalized coordinates such
that � = (xn = 0).

We will investigate the behaviour of the trajectories of the system as � → 0.

Example. Consider the problem of the motion of a point inside an (n − 1)-dimensional ellipsoid

Following Birkhoff,5 the problem can be regarded as the limit for the problem of the motion of a point on the surface
of an n-dimensional ellipsoid

in which the semiaxis an+1 is small (of the order of �).

By replacing the variables xn+1 → �xn+1 we can fix the surface of the n-dimensional ellipsoid, in which case the
kinetic energy will depend on the small parameter � and takes the form

Consider the mapping of the projection of the surface of the n-dimensional ellipsoid onto Rn along the direction xn+1.
The set of critical points of the mapping of the projection forms a manifold on the surface of the n-dimensional ellipsoid,
the projection of which coincides with the (n − 1)-dimensional ellipsoid of the initial problem. It can be shown that
when � = 0 the kinetic energy of the system degenerates on this manifold.

We will write the Lagrange function

where V (x̄, �) is the potential energy of the system in generalized coordinates. Lagrange’s equations then take the form

(1.1)

where Fi(x̄, ˙̄x, �) is a function which depends on the potential and kinetic energies.

Definition. Suppose ��(t) = �(t, �), t ∈ [a, b] is the solution of Lagrange’s equations (1.1) for certain initial conditions
��(a) = x̄0, �̇�(a) = ˙̄x0. If, when � → 0, the limit �0 of the functions �� exists with respect to the norm C1, i.e.
lim ||�e − �0||C1 = 0 as � → 0, we will call the curve of �0 the limit trajectory.

Since, when � = 0, the determinant of the matrix C(x̄, 0) is non-zero everywhere, apart from the hypersurface �

then, by virtue of the theorem of the continuous dependence of the solutions of a differential equation on the param-
eter, the limiting trajectories in the region �\� are solutions of the limit Lagrange equations C(x̄, 0)¨̄x = F (x̄, ˙̄x, 0).
Hence, to find the limit trajectory in the region �\� it is sufficient to solve Lagrange’s equations for � = 0 in the
region �\�.
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2. The behaviour of the trajectories of the system in the neighbourhood of the degeneration hypersurface

We will assume that the potential energy of the system is even in xn, while the kinetic energy is invariant under the
transformation xn → −xn, and when � = 0 it is non-degenerate in ẋ, where x = (x1, . . ., xn−1). With these assumptions
we can identify the regions �+ = {(x, xn), xn ≥ 0}⊂ � and �− = {(x, xn), xn ≤ 0}⊂ � and consider the motion of a
point in the region �+ with boundary �.

A non-degenerate replacement of variables6 (x, xn) → (q, qn), qn = xn exists, which reduces the kinetic energy of
the system

to the form

Since the kinetic energy of the system is degenerate on � when � = 0 and det Â(q, 0, 0) �= 0, we have ĉ(q, 0, 0) = 0.
Consequently ĉ(q, q2

n, 0) = c(q, q2
n)q2

n. We will assume that c(q, 0) > 0; the case c(q, 0) = 0 corresponds to a higher-order
degeneracy.

As a result, the kinetic energy of the system in the new variables has the form

(2.1)

Suppose V = V (q, q2
n, �) is the potential energy in the new coordinates. Introducing the generalized momenta

we can write Hamilton’s function

(2.2)

Hamilton’s equations have the form

We will expand B(q, q2
n) and V (q, q2

n, �) in powers of qn

(2.3)

Making the replacement of variables pn = �2z, qn = �y, taking expansion (2.3) into account, we will write Hamilton’s
equations in the neighbourhood �� = {|pn| ≤ �2, |qn| ≤ �} of the manifold �̃ = {pn = 0, qn = 0} in phase space,
introducing the notation

(2.4)
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(2.5)

(2.6)

We have

(2.7)

where h1, h2 and f1 are certain functions; since Hamilton’s function is even in the variable qn we obtain that f1(p, q, 0,
0, �) = 0.

Remark. We put � = 0 and consider the limit system in coordinates q, s = q2
n/2. We will show that the function N(p,

q) has the mechanical meaning of the normal reaction to the hypersurface � = {s = 0} for motion over this hypersurface.

We recall that if a constraint f(q, s) = 0 is imposed on the system, the motions of the system are described by
Lagrange’s equations with undetermined multiplier �

while the Lagrange undetermined multiplier � is proportional to the reaction of the constraint f(q, s) = 0.6 Since the
kinetic energy of the system has the form (2.1) and f(q, s) = s, Lagrange’s equations take the following form when � = 0

(2.8)

Using the expansion

we find

Taking expansion (2.3) into account, we obtain B1 = −A−1
0 A1A

−1
0 . Since p = A0q̇ when s = 0, we have

Since, for motion on the constraint,

we obtain from the second equation of (2.8)

(2.9)

Consequently, the function N(p, q) has the meaning of the normal reaction to the hypersurface � for motion over this
surface. The normal to the hypersurface � = {s = 0} is directed into the region s ≥ 0.

We will henceforth call the function N(p, q) the normal reaction of the constraint.
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2.1. The case of a positive normal reaction

We will assume that N(p, q) > 0 in a certain region D ⊂ �̃. Suppose

We will assume that the initial system belongs to the class C3. Then

We will consider the Cauchy problem for systems of differential equations (2.7) with initial conditions from the
region S

(2.10)

Putting � = 0 in system (2.7), we obtain the degenerate system

(2.11)

Solving system (2.11) with initial conditions p(0) = p0, q(0) = q0, we obtain

(2.12)

Proposition. Suppose N(p̃(t), q̃(t)) > 0 for any t ∈ [0, T]. Then, constants C, C1 and C2, independent of ε, exist such
that for any small ε > 0 the solution of problem (2.7), (2.10) exists for any t ∈ [0, T] and the following estimates hold

Proof. Introducing the notation

where E is the identity matrix of order n − 1, we can write system (2.7) in the form

(2.13)

We recall that f1(�, 0, �) = 0.
Since N(�̃(t)) > 0, the matrix of the second derivative F��(�, �) of the function F of the form (2.6) is positive

definite on the solution (2.12).
We will further use a well-known method of proof.7 We obtain constants M > 0 and � > 0, which are independent

of �, such that in the region S × [0, �0] the following estimates hold

We find
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Integrating, we obtain

Since F(0) ≤ M|�(0)|2 we have F(t) ≤ M|�(0)|2e(t). Consequently,

and the solution �(t) is bounded in the section [0, T], i.e.

where C is a positive constant, independent of �.
We will estimate the difference between the solution � = �(t) of system (2.13) and the solution �̃(t) of the degenerate

system. To do this we will make the replacement � = �(t) + �. After substitution into the first equation of system (2.13),
following the well-known approach,7 we obtain

Taking into account the estimates presented above we have

Then

Since pn = �2z, qn = �y, we can formulate the following theorem in the initial variables. �

Theorem 1. Suppose N(p, q) > 0 in a certain region D on the manifold �̃ in phase space. Suppose p̃(t), q̃(t) is the
solution of the Hamilton equations with Hamiltonian (2.5) with initial conditions

(2.14)

and N(p̃(t), q̃(t)) > 0 for any t ∈ [0, T]. Then positive constants, C, C1 and C2, independent of ε, exist such that, for
any small ε > 0 and any initial given p(0), q(0), pn(0), qn(0), satisfying conditions (2.14) and the inequalities

a solution of Hamilton’s equations with Hamiltonian (2.2) exists in the section [0, T] and the following estimates hold

2.2. The case of a negative normal reaction

We will assume that N(p, q) < 0 in a certain region D ⊂ �̃. Suppose

We will assume that the initial system belongs to the class C∞. Then
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Substituting the solution p = p̃(t) and q = q̃(t) of degenerate system (2.11) with initial conditions (p0, q0) ∈ D into
the last two equations of system (2.7), we obtain

(2.15)

where

(2.16)

We put t = ��. Then system (2.15) takes the form

(2.17)

where

Fixing t, we construct the phase portrait of (2.17) when � = 0. The phase trajectories are specified by the equation
F = const. Since N(p̃(t), q̃(t)) < 0 in the section [0, T], the phase trajectories have the form shown in Fig. 1.

Suppose Ws
t is the stable separatrice of the saddle equilibrium position z = 0, y = 0, corresponding to the value of

the parameter t, and Wu
t is an unstable separatrice. Since the phase trajectories are not closed, for almost all initial

conditions the solution of the Cauchy problem for system (2.15) increases without limit as � → 0. Hence, almost all
the solutions of system (2.7) with initial conditions (2.14) and z(0) = z0 �= 0, y(0) = y0 depart from the manifold �̃.

Fig. 1.
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Consider the system of differential equations (2.7) with boundary conditions from the region S

(2.18)

We will seek a solution of problem (2.7), (2.18) in the form8,9

where � = (p, q, z, y), and 	, 
 and � are regular functions of its arguments. The function 
(t/�, �) describes the behaviour
of the system in a boundary layer in the neighbourhood of t = 0, the function �((t − T)/�, �) describes the behaviour
of the system in the boundary layer in the neighbourhood of t = T, while the function 	(t, �) describes the behaviour
of the system outside the boundary layers. The solution of the boundary-value problem will be sought in the form of
an asymptotic expansion in � separately for the components of the motion outside and inside the boundary layers. An
algorithm for constructing the solution can be found in Ref. 9.

Following this algorithm, we construct the zeroth approximation of the solution of problem (2.7), (2.18). For the
variables p and q we have

(2.19)

i.e. the solution p(t) and q(t) in the zeroth approximation in � does not contain boundary-layer functions and is
the solution of degenerate system (2.11). To construct the solution z(t), y(t) we consider system (2.17). Suppose
gτ

t : R2 → R2 is the mapping after a time �, specified by system (2.17), corresponding to the value of the parameter t.
On the separatrice Ws

0 we take a point M0 such that yM0 = y0, while on the separatrice Wu
T we take a point M1 such

that yM1 = y1 (Fig. 1). Using well-known results9 (see also Ref. 8), it can be shown that the solution of system (2.7)
for the variables � = (z, y) has the form

(2.20)

where |�̃| < L�, and L is a constant independent of � and t. Everywhere, with the exception of a certain neighbourhood
of the point t = 0, the quantity g

t/�
0 (M0) can be as small as desired; hence g

t/�
0 (M0) is the solution in the boundary layer in

the neighbourhood of the point t = 0. Similarly g
(t−T )/�
T (M1) is the solution in the boundary layer in the neighbourhood

of t = T. Since M0 ∈ Ws
0 and M1 ∈ Wu

T , we have, for any instant t ∈ [�, T − �] � > 0,

uniformly over t ∈ [�, T − �]. Hence, the solution (2.20) as � → 0 approaches the solution of the degenerate system
� = 0.

It follows from well-known results9 that the solution (2.19), (2.20) is the zeroth approximation of the solution of
problem (2.7), (2.18) and the following limits hold

We can formulate the following theory in the original variables.

Theorem 2. Suppose N(p, q) < 0 in a certain region D on the manifold �̃ in phase space. Suppose p̃(t), q̃(t) is the
solution of Hamilton’s equations with Hamiltonian (2.5) with initial conditions (2.14) and N(p̃(t), q̃(t)) < 0 for any
t ∈ [0, T]. Then positive constants C, C1 and C2, independent of ε, exist such that for any small ε > 0 and any boundary
data p(0), q(0), qn(0), qn(T), which satisfy conditions (2.14) and the inequalities

a unique solution of Hamilton’s equations exist with Hamiltonian (2.2) in the section [0, T] and the following limits
hold
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2.3. Interpretation of the results

The results obtained can be interpreted as follows.

1◦. Suppose the normal reaction to the hypersurface � is positive in a certain region D of the manifold �̃. Then, for
sufficiently small �, trajectories beginning in the neighbourhood of �� of the region D in phase space do not leave
this neighbourhood during a certain time interval t ∈ [0, T].

Suppose p̃(t), q̃(t) is the solution of the system with constraints qn = 0 for initial given p0, q0 ∈ D, and the normal
reaction of the constraint, corresponding to the solution p̃(t), q̃(t), is positive in the section t ∈ [0, T]. Consider the
�-tube of the solution p̃(t), q̃(t) in the phase space

For sufficiently small � the trajectories of the system being investigated, beginning in �̃�, do not leave the tube

where C > 0 is a constant independent of �, and approaches the solution of the system with the constraint as � → 0.
2◦. Suppose the normal reaction is negative in a certain region D of the manifold �̃. Then almost all the trajectories
leave the neighbourhood �� of the region D in phase space in a time of the order �ln�−1.

Suppose q̃(t) is the solution of the system with constraint qn = 0 with initial given q0, q̇0, and the normal reaction
of the constraint, corresponding to the solution q̃(t), is negative in the section t ∈ [0, T]. Consider the �-tube of the
solution q̃(t) in the configuration space

For sufficiently small �, a unique trajectory exists connecting any two points of ��, which does not leave the tube

and which passes along � (Fig. 2). When � → 0 this trajectory approaches the trajectory of the system with the
constraint.

Fig. 2.
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2.4. The problem of relaxing the invariance conditions

The invariance conditions with respect to the transformation xn → −xn, imposed on the kinetic and potential energies
of the system are fairly restrictive.

We will assume that the kinetic energy of the system when � = 0 degenerates on the surface � = {xn = 0} and has
the form

Making the change of variables (x, xn) → (q, qn) in accordance with the formulae6

we can reduce the kinetic-energy matrix to diagonal form. We have6

(2.21)

The kinetic energy takes the following form in the new coordinates

(2.22)

(2.23)

in which case ĉ(q, 0, 0) = 0, since the kinetic energy is degenerate on �.
We expand the potential energy and the coefficients occurring in the kinetic energy in series in powers of qn

It is obvious that the structure of system (2.7) does not change when Â1(q) = 0, ĉ1(q) = 0 and V1(q, �) = �2Ṽ1. In view
of this, the evenness conditions imposed on the potential and kinetic energies can be replaced by the condition that the
derivative with respect to qn is equal to zero when qn = 0 and � = 0, and the results obtained above remain true. For any
function f(x, xn, �), by the rule of the differentiation of a complex function and taking the replacement formula (2.21)
into account, we have

By choosing as the function f the functions V and ĉ of the form (2.23), we obtain the following conditions for Theorems
1 and 2 to be applicable

(2.24)

We can similarly obtain the conditions for the coefficients of the kinetic-energy matrix A; these conditions are not
given here in view of their complexity. If the kinetic energy of the system is independent of the variables x, we have
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âlk = alk|xn→qn and the conditions take the form

(2.25)

We will consider how to calculate the normal reaction of the constraint in the original variables. Taking the remark
into account, we write the normal reaction (2.9) in the form

(2.26)

Consequently, to calculate the normal reaction of the constraint it is necessary, in the same way as was done above, to
calculate the second partial derivative of V and Â with respect to qn taking into account relations (2.21) and (2.23) and
the fact that q̇ = ẋ when qn = 0. In the case when the function f(x, xn, �) is independent of the variables x, we have

3. The problem of the motion of a double mathematical pendulum

Consider a system consisting of two point masses with masses m1 and m2, connected to one another by a weightless
rod of length l2, while the point with mass m1 is connected to a fixed point by a weightless rod of length l1 (Fig. 3).
The system oscillates in a vertical plane. We will investigate the behaviour of the system in the case when the mass
of the point closest to the suspension point is small: m1 = �2m̃1. To be specific we will assume that l1 > l2. The case
l1 < l2 is completely analogous. The case l1 = l2 is not covered by the proposed theory.

The system has two degrees of freedom. We will choose as the generalized coordinates the angles 
1 and 
2, which
the rods make with the vertical. We will calculate the kinetic and potential energies of the system. The configuration
space of the system is a two-dimensional torus. For the kinetic energy we have

Fig. 3.
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For the potential energy, if we assume it to be zero in the position 
1 = 0 and 
2 = 0, we will have

Assuming m1 = �2m̃1, we can write the kinetic-energy matrix

(3.1)

The determinant of matrix (3.1) when � = 0 is

Consequently, when 
2 = 
1 and 
2 = 
1 + � the kinetic energy of the system is degenerate.
Hence, the curve of the degeneracy � splits into two components

Consider the behaviour of the system in the region of the component �1. We make the replacement 
2 − 
1 = �.
Then, the kinetic and potential energies take the form

(3.2)

(3.3)

where

According to what was said in Section 2.4, by a replacement of the variables of the form (2.21) we can reduce the
kinetic-energy matrix to diagonal form. In this problem the variable 
1 corresponds to the variable x while the variable
� corresponds to the variable qn. The replacement of the variables (
1, �) → (�, �) is given by the formula 
1 = f(�,
�), where f ′

� = −b/a.
Since the kinetic energy (3.2) of the system is independent of the variable 
1, we obtain, as a result of the replacement,

We will verify the conditions required for Theorems 1 and 2 to be satisfied. For the potential energy (3.3) we have
∂V/∂�|�=0, �=0 = 0. By virtue of the fact that a and ĉ are even in �, conditions (2.24) and (2.25), for which Theorems 1
and 2 are applicable, are satisfied.

We will obtain the normal reaction of the constraint � = 0. By formula (2.26) we have

Taking into account the fact that (cos �)′|�=0 = 0 and 
1 = 0 when � = 0, we obtain
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Then

(3.4)

As was mentioned above (see the remark), the function (3.4) is not exactly the physical normal reaction of the
constraint, but is proportional to it.

For motion with respect to the constraint, �̇ and � satisfy the equality

(3.5)

It can be seen from relations (3.4) and (3.5) that when � = 0 the behaviour of the double pendulum is described by
the motion of a point with mass m2 in a circle of radius R = l1 + l2. By expressing �̇ from Eq. (3.5) and substituting it
into (3.4), we obtain that

Consequently, the normal reaction is positive if cos � > 2/3 − C/(3g). If

(3.6)

the normal reaction of the component of the boundary �1 is positive everywhere, and so the trajectories of the limit
system, beginning at the boundary �1 with velocity tangent to �1 do not leave the boundary. If the sign of inequality
(3.6) is reversed, then, on a certain part of the component of the boundary �1, specified by the angles � ∈ (−�*, �*),
where �* = arccos(2/3 − C/(3g)), the normal reaction is positive, while on the part of the boundary �1 specified by the
angles � ∈ (�*, 2� − �*), the normal reaction is negative.

We can similarly consider the motion in the region of the component �2. The equation of the constraint in this case
has the form � = �, and a normal reaction of the constraint is

For motion on the constraint, �̇ and � satisfy the equality

It can be seen that the behaviour of the double pendulum when � = � is described by the motion of a point of
mass m2 on the outer side of a circle of radius r = l1 − l2. As in the previous case, a region of the component of
the boundary �2 exists where the normal reaction is negative, and a region of the component of the boundary �2
where the normal reaction is positive. For sufficiently large h the normal reaction is negative everywhere on the
boundary � = �.

Hence, when � → 0 for a fixed level of energy of the system h, the motions of the limit system are the motions of a
point of mass m2 in a gravitational field inside a ring

On the boundaries of the ring the kinetic energy is degenerate. If the trajectories of the limit system reach the
boundary at a non-zero angle, the behaviour of the trajectories are such that the angle of incidence is equal to the angle
of reflection (billiard trajectories).4



T.V. Popova / Journal of Applied Mathematics and Mechanics 70 (2006) 18–31 31

Fig. 4.

Other types of trajectories exist in the neighbourhood of the boundary in the limit system. These are:

1) if the normal reaction is positive on a certain part of the boundary, the trajectories beginning in this part with a
velocity tangential to the boundary proceed along the boundary until they arrive in the region of negative reaction;

2) if the normal reaction of the boundary is negative on a certain part of the boundary, then almost all the trajectories
leave the boundary, but a single boundary exists which connects any two points of the boundary and which passes
along it (Fig. 4).

When the energy h of the system is sufficiently high, the normal reaction of the constraint |z| = R is positive at each
point of the boundary, while the normal reaction of the constraint |z| = r is negative.

The behaviour of a double mathematical pendulum in the case when the mass of the point closest to the suspension
point is small, was considered previously in Ref. 10. For values of the energy close to the maximum potential energy,
using variational methods it was proved that the problem of a double mathematical pendulum is non-integrable for a
certain ratio of the masses of the point masses and of the lengths of its sections. The existence of chaotic trajectories of
a double pendulum and the non-integrability of the system for sufficiently small ratios of the masses and sufficiently
high energy values were proved in Ref. 11 using methods of perturbation theory.

This research was supported financially by the “State Support for the Leading Scientific Schools” programme
(NSh-136.2003.1) and the Russian Foundation for Basic Research (05-01-01119).
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